STEEL SUSCEPTIBILITY TO HYDROGEN INDUCED FAILURE

<u>Helena M. Ferreira^{1*}, H. Cockings¹, D. Figueroa-Gordon², G. Williams¹</u>

* Email: 1916341@swansea.ac.uk ¹ Materials Research Centre, Swansea University, SA1 8EN ² Tata Steel UK, Port Talbot, SA13 2NG

INTRODUCTION

Hydrogen will play an important role in the decarbonisation of sectors that cannot rely exclusively in electrification (e.g. transportation, energy and carbon intensive industries) [1].

The strong investment verified in large-scale projects like HyNet or South Wales Industrial Cluster (SWIC) indicates that soon it will be necessary to reform and expand the current gas transportation and storage infrastructure, to accommodate high volumes of pure or blended hydrogen.

Two crucial elements of that infrastructure are steel *pipelines* and *pressure vessels*, which are particularly susceptible to hydrogen induced failure (HIF), an unpredictable phenomena that often leads to substantial economic losses and environmental damages.

Table1: Typical steel grades for pipeline and pressure applications [2,3].

	Steel grade	Mass fraction (%), max. value					Yield	Toncilo	
		С	Mn	Ρ	S	Si	strength (MPa, min)	strength (MPa)	Elongation (%)
	X52 to X70*	0.28	1.40	0.030	0.030		290-485	415-570	
	P235GH, P265GH	0.16	0.6-1.2	0.025	0.010	0.350	235	360-480	24
* Nb + V + Ti ≤ 0.15%									

INTERACTION OF HYDROGEN WITH METALS

Table 2: Differences expected in HIF caused by internal hydrogen and hydrogen environment [4].

		Internal Hydrogen	Hydrogen Environment	
Parameter		Contained in interstitial solid solution	Takes place when metal is stressed	
		during manufacturing or corrosion	in high-pressure hydrogen	
	Delayed Failure Tests	Embrittled	Not embrittled	
	Crack Origin	Subsurface (inside metal)	At surface	
	Crack Rate Dependency	Hydrogen diffusion	Hydrogen adsorption	
	Surface Cracking	Not observed	Observed in unnotched specimens	

Factors that lead to pipeline and pressure vessels failure:

- Higher strength steels are more susceptible to hydrogen damage
- Elevated internal pressure and cyclic stresses
- Corrosion

RESEARCH PROJECT OUTCOMES

 Characterization of microstructure, corrosion properties and evaluation of mechanical properties degradation in contact with hydrogen.

Study hydrogen Of transport characteristics, for different service conditions (temperature fluctuations, pressure).

hydrogen Understand atomic distribution using conventional and advanced state of the art techniques.

 0.7MPa H_2 115 MPa H $_2$ Air Fatigue fracture surfaces of JIS-SM490B steel round-bar specimens, broken at σ_a of 320MPa (R=-1, f=1 Hz) [5].

Reconstructed 3D model (neutron tomography) of a hydrogen charged iron sample [7].

REFERENCES

[1] N. P. Brandon and Z. Kurban, Phil. Trans R. Soc. A, 375:20160400 (2017), 31. [2] "ISO 3183: Petroleum and natural gas industries - Steel for pipeline transportation systems," 2012. [3] https://www.tatasteeleurope.com/ts/engineering/products/hot-rolled/steel-for-pressure-vessels (accessed on 10/02/2021) [4] Y. Wada et al., ICHS (2005) [5] Ogawa Y et al., Int. J. Fatigue, 103 (2017), 223-233 [6] S. Papavinasam, Corrosion Control in the Oil and Gas Industry, Gulf Professional Publishing (2014) [7] A. Griesche et al., Phys. Procedia, 69 (2015).

Engineering and Physical Sciences Research Council TATA STEEL Swansea University 1ATERIALS AND MANUFACTURING ACADEM Prifysgol Abertawe YR ACADEMI DEUNYDDIAU A GWEITHGYNHYRCHU

INDEB EWROPEAIDD EUROPEAN UNION

Welsh Government

Cronfa Gymdeithasol Ewrop **European Social Fund**